CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy 10.3: Polar Equations

Calculus involving Polar Equations

Plot the rectangular (x, y) coordinate $(1, \sqrt{3})$. Then determine the polar coordinates (r,θ) of the point.

point. $(r_1 \theta)$ $r_2 \sqrt{1^2 + f_3^2}$ radius angle $r_3 = \sqrt{1+3}$ fund = $\sqrt{1+3}$ $r_3 = \sqrt{4}$ $r_4 = \sqrt{1+3}$

 $\begin{aligned}
& \text{funb} = \frac{\sqrt{3}}{1} \\
& \theta = \text{fun}^{-1}(\sqrt{3}) \quad \theta = 60^{0} = \sqrt{1}/3
\end{aligned}$

Plot the polar (r,θ) coordinate $\left(\sqrt{2},\frac{\pi}{4}\right)$. Then determine the rectangular coordinate (x, y) of the point.

$$\cos \frac{\pi}{4} = \frac{x}{\sqrt{2}}$$

$$\sin \frac{\pi}{4} = \frac{4}{\sqrt{2}}$$

If r and $\frac{dr}{d\theta}$ are the same sign the particle is moving away from the origin

If r and $\frac{dr}{d\theta}$ are opposite signs the particle is moving toward the origin

If $\frac{dr}{d\theta} = 0$, the particle is the furthest from the origin

If r = 0 and $\frac{dr}{d\theta}$ is positive or negative, the particle is getting ready to move away from the origin

Graph the circle $r = \sin \theta$. Then determine the slope of the curve a 3.

and then determine $\frac{dr}{d\theta}$ and interpret what it means

Then determine the means $\frac{r}{\sqrt{Q}} = \frac{d}{\sqrt{Q}} = \frac{d}$

Graph the circle $r = 2\cos\theta$. Then determine the slope of the curve at $\theta = \frac{\pi}{4}$

and then determine $\frac{dr}{d\theta}$ and interpret what it means

